
Block Diagrams

Introduction
Solving problems is often difficult in each branch of human knowledge and

sometimes it is impossible without an appropriate strategy that helps us in this heavy work.
Scientists and electronic designers have tried to create many models able to help

electronic technicians in this difficult task, without gaining any apparent advantage.

Actually, the best strategy to face a scientific or technical problem seems to be the old
divide et impera strategy. It consists of splitting the whole problem into several interrelated
sub-problems which may be easier to solve, if taken one by one.

When we apply this technique in Electronics, we usually draw a block diagram.

Block diagrams
An example of block diagram is shown in fig.1.

There we can see three blocks (block A, B and C) connected by arrows; some capital
letters followed by numbers (A1, B2, etc.) representing electrical variables; nodes that let the
signal flow into different blocks.

The blocks represent the solution of the sub-problem and could be an electrical
analogue circuit or an electrical digital one. Each block accepts n input variables (represented
by the letters followed by the number, e.g. A1, B2, C1, etc.) and puts m variables into its
outputs. The arrows indicate the flow of the signal. That one indicated by the variable C2, for
example, flows from block B to block C. This means that C2 is an output for block B and an
input for block C.

The node lets the signal flow (like in fig. 1) both into block A and block B. It must be
clear that the node doesn’t interfere with the signal in any way. That means that the signal
remains the same before and after the node, either at the block A input or at the block B
input.

1

A1

A2

A3

B1

C1

C2

D1

Node Variable

Arrow

Block

Block A

Block B

Block C

fig. 1

Blocks and variables
Each block is completely and not ambiguously identified when we know:

- all the input variables expressed in terms of name, function and active state
(if it is a digital variable) or range (if it is an analogue variable);

- all the output variables expressed in terms of name, function and active
state (if it is a digital variable) or range (if it is an analogue variable);

- the law that links each output to the related inputs. If the block is formed
by a combinatorial circuit, that law is expressed by the truth table: if the
block is formed by a sequential circuit, the law is expressed by the state
diagram and if the block is formed by an analogue circuit, usually it can be
substituted by one or more fundamental analogue circuits. This last case
will be discussed in a further lesson.

The most difficult thing to do is to identify which type of block we must use:
combinatorial, sequential or analogue. Typically, the greatest difficulties are met when we
have to choose between a combinatorial or sequential circuit.

Before we can correctly choose one of the two solutions, we must try to write the
truth table. If we obtain, for each combination of inputs and for each output, only one
possible output state, the circuit is a combinatorial one, otherwise it must be a sequential one.

Another little problem which the student usually struggles on is represented by the
“splitting depth”: when can we stop splitting each block into other sub-blocks? Usually this
action continues until each block is solvable with one of the methods that we know
(Karnaugh maps, Moore or Mealy models, etc.).

In the next section we will try to face a typical problem of combinatorial logic.

An example
There are two crossing streets controlled by four traffic lights, as shown in fig. 2.

2

TL1
TL2

TL3
TL4

fig. 2

We must design a system that activates a line called Err (active high) whenever there
is a fault in one or more of the traffic lights.

First of all, we must specify what we mean by the word “fault”.We have three types
of faults: one type related to the single traffic light (single fault); one type related to traffic
lights positioned on the same direction (for example TL1 and TL3: same direction fault) and
one type related to traffic lights positioned on different directions (for example TL1 and TL2:
different direction fault).

Single fault
We have a single fault in a traffic light when no lights are on or when two or more

lights are on at the same time. Fault type 1.

Same direction fault
We have a same direction fault in two traffic lights positioned on the same direction

when the two traffic lights have different lights on (for example, red in one traffic light and
green in the other). Fault type 2.

Different direction fault
We have a different direction fault in two traffic lights positioned on different

directions when they are not coherent each other (for example, TL1 green and TL2 green).
Fault type 3.

Now that we have cleared what we mean by Single fault, Same direction fault and
Different direction fault, we can try to face the problem. Its block diagram is the following:

Each arrow in the input is formed by three different signals: Red, Green and Yellow
(active high) and represents the activation signals of the traffic light. Since the number of
input lines is very high (4x3=12), it is not possible to apply the Karnaugh maps to solve the
problem. First we must split the single block CL1 into several, but easier to solve, blocks.

3

RGY TL1

RGY TL2

RGY TL3

RGY TL4

Err
CL1

fig. 3

For instance, we could create, for each traffic light, a block which analyses the Single
fault, as shown in figure 4. The block has to be identified according to the rules previously
defined:

Inputs
Rx: Indicates that the Red light of the TL x is on. Active high;
Gx: Indicates that the Green light of the TL x is on. Active high;
Yx: Indicates that the Yellow light of the TL x is on. Active high.

Outputs
SFx0 and SFx1 (with SFx0 LSB) form together a code explained by table 1:

SFx1 SFx0 Meaning

0 0 An error on the TL x occurred

0 1 The Red light is on

1 0 The Green light is on

1 1 The Yellow light is on

Now we can write the truth table of the block (table 2):

Rx Gx Yx SFx1 SFx0 Meaning

0 0 0 0 0 An error on the TL x occurred

0 0 1 1 1 The Yellow light is on

0 1 0 1 0 The Green light is on

0 1 1 0 0 An error on the TL x occurred

1 0 0 0 1 The Red light is on

1 0 1 0 0 An error on the TL x occurred

1 1 0 0 0 An error on the TL x occurred

1 1 1 0 0 An error on the TL x occurred

4

SFBx

Rx

Gx

Yx

SFx0

SFx1

fig. 4

tab. 1

tab. 2

It is very important to focus the attention to SFx1 and SFx0. Two bits are absolutely
sufficient to define without ambiguity the state of the traffic light: using two bits it is possible
to know when the red light is on, when the green light is on, when the yellow light is on or
when an error occurred. Actually, it is not important that the output code indicates which kind
of error occurred, but only if it occurred.

The Karnaugh's map are the following:

SFx1 = Rx∙Gx∙Yx + Rx∙Gx∙Yx (1)

SFx0 = Rx∙Gx∙Yx + Rx∙Gx∙Yx (2)

No reduction is possible.
Now we can draw a new block diagram, as the following:

5

SF3

SF4

R
TL3

G
TL3

Y
TL3

R
TL4

G
TL4

Y
TL4

SF1

SF2

R
TL1

G
TL1

Y
TL1

R
TL2

G
TL2

Y
TL2

SFB1

SFB2

SFB3

SFB4

BL1
Err

fig. 5

00 01 11 10

0

1

Rx

Gx/Yx

1

SFx1

1

00 01 11 10

0

1

Rx

Gx/Yx

1

SFx0

1

Actually, the block diagram shown in fig. 5 is not a good one. Each SFx output is
formed by 2 wires. That means that BL1 has 8 inputs and that Karnaugh is not usable. So we
must look for a different solution, even though the block SFBx represents a good solution.

We can try to continue in the same way as we started: as for SFBx, we can create a
block (SDFBx) that evaluates a unique fault, for instance, the same direction fault.
Proceeding in this way means applying the divide et impera method, introduced at the
beginning of the paper.

The same direction fault block could appear as the following:

The block SDFB1 evaluates the same direction fault on only one direction. We need a
second block, similar or equal to the first one, which evaluates the same direction fault on the
orthogonal direction. As we did for the block SFBx, we put in the output not only a single
error line, that goes high if a fault is detected, but a couple of lines that form together a code
which identifies the state of the traffic light. This is absolutely sufficient, because, if it all
works well, the traffic light that lay on the same direction must light on the same lights and
not different ones.

This means that the block SDFB1 must evaluate the output signals of the blocks SFB1
and SFB2 (which must be the same) and if it is so, replicate the SF1 or SF2 code in its output.
This can be easily done using the Karnaugh maps, because the input number is 2+2=4 and the
maps are usable.

Now the block can be identified following the previously defined rules:

Inputs
SFx0: Low bit of the output code of block SFBx;
SFx1: High bit of the output code of block SFBx;
SFy0: Low bit of the output code of block SFBy;
SFy1: High bit of the output code of block SFBy;

Outputs
SDFx0 and SDFx1 (with SDFx0 LSB) form together a code as explained by table 3:

SDFx1 SDFx0 Meaning

0 0 An error on the TL x occurred

0 1 The Red light is on

1 0 The Green light is on

1 1 The Yellow light is on

6

SF1

SF2

R
TL1

G
TL1

Y
TL1

R
TL2

G
TL2

Y
TL2

SFB1

SFB2

SDFB1 SDF11

SDF10

fig. 6

tab. 3

Now we can write the truth table of the block (table 4):

SFy1 SFy0 SFx1 SFx0 SDFx1 SDFx0 Meaning

0 0 0 0 0 0 A fault of type 1 or 2 occurred

0 0 0 1 0 0 A fault of type 1 or 2 occurred

0 0 1 0 0 0 A fault of type 1 or 2 occurred

0 0 1 1 0 0 A fault of type 1 or 2 occurred

0 1 0 0 0 0 A fault of type 1 or 2 occurred

0 1 0 1 0 1 The Red light is on

0 1 1 0 0 0 A fault of type 1 or 2 occurred

0 1 1 1 0 0 A fault of type 1 or 2 occurred

1 0 0 0 0 0 A fault of type 1 or 2 occurred

1 0 0 1 0 0 A fault of type 1 or 2 occurred

1 0 1 0 1 0 The Green light is on

1 0 1 1 0 0 A fault of type 1 or 2 occurred

1 1 0 0 0 0 A fault of type 1 or 2 occurred

1 1 0 1 0 0 A fault of type 1 or 2 occurred

1 1 1 0 0 0 A fault of type 1 or 2 occurred

1 1 1 1 1 1 The Yellow light is on

Now it is possible to fill in the Karnaugh's maps:

The equations are the following:

SDFx0 = SFy1∙SFy0∙SFx1∙SFx0 + SFy1∙SFy0∙SFx1∙SFx0 (3)

SDFx1 = SFy1∙SFy0∙SFx1∙SFx0 + SFy1∙SFy0∙SFx1∙SFx0 (4)

7

tab. 4

00 01 11 10

00
SFy1/SFy0

SFx1/SFx0

1

SDFx0

01

11

10

1

00 01 11 10

00
SFy1/SFy0

SFx1/SFx0
SDFx1

01

11

10

1

1

Now we can face the last problem: reading the two codes put in the output of the
blocks SDFB1 and SDFB2 and producing an error signal depending on them and the
different direction fault rule.

The whole block diagram could be the following:

The last block (DDFB1) can now be identified following the previously defined (and
well known) rules:

Inputs
SDF10: Low bit of the output code of block SDFB1;
SDF11: High bit of the output code of block SDFB1;
SDF20: Low bit of the output code of block SDFB2;
SDF21: High bit of the output code of block SDFB2;

Outputs
Err: Output error line. Active low.

The truth table of the block is shown in tab. 5

8

SF1

SF2

R
TL1

G
TL1

Y
TL1

R
TL2

G
TL2

Y
TL2

SFB1

SFB2

SDFB1

SF3

SF4

R
TL3

G
TL3

Y
TL3

R
TL4

G
TL4

Y
TL4

SFB3

SFB4

SDFB2

SDF1

SDF2

DDFB1 Err

fig. 7

tab. 5

SDF21 SDF20 SDF11 SDF10 Err Meaning

0 0 0 0 0 A fault of type 1, 2 or 3 occurred

0 0 0 1 0 A fault of type 1, 2 or 3 occurred

0 0 1 0 0 A fault of type 1, 2 or 3 occurred

0 0 1 1 0 A fault of type 1, 2 or 3 occurred

0 1 0 0 0 A fault of type 1, 2 or 3 occurred

0 1 0 1 0 A fault of type 1, 2 or 3 occurred

0 1 1 0 1 Valid situation (red + green)

0 1 1 1 1 Valid situation (red + yellow)

1 0 0 0 0 A fault of type 1, 2 or 3 occurred

1 0 0 1 1 Valid situation (green + red)

1 0 1 0 0 A fault of type 1, 2 or 3 occurred

1 0 1 1 0 A fault of type 1, 2 or 3 occurred

1 1 0 0 0 A fault of type 1, 2 or 3 occurred

1 1 0 1 1 Valid situation (yellow + red)

1 1 1 0 0 A fault of type 1, 2 or 3 occurred

1 1 1 1 0 A fault of type 1, 2 or 3 occurred

Now it is possible to fill in the Karnaugh's map:

Err = SDF21∙SDF20∙SDF11 + SDF21∙SDF11∙SDF10

Now that we have found the functions of the blocks SFBx, SDFBx and DDFB1, we
can try to draw the electrical circuit using the gates instead of the logical functions.

The three solutions related to the blocks are shown in fig. 8, 9 and 10, while the whole
circuit is shown in fig. 11.

9

00 01 11 10

00
SDF21/SDF20

SDF11/SDF10

1

Err

01

11

10

1

1

1

10

SFx1

RxGxYx

SFx0

SFy1 SFy0 SFx1 SFx0

SDFx1

SDFx0

fig. 8

fig. 9

SDF10SDF11SDF20SDF21

Err

fig. 10

Conclusions
This paper has tried to explain how we can face a problem of medium complexity, by

splitting it into several problems of low complexity, applying the divide et impera strategy,
and solving each one of them using canonical synthesis methods.

We have also learned how a block must be identified and how it should be solved and,
at the end of the paper, we have tried to face and solve a real problem.

What this paper presents is not the only way to solve a problem of combinatorial
logic. There are several other techniques and strategies, but this one should be carefully
studied by the student, because it represents a simple, neat and practical method.

11

R1G1Y1 Y2G2R2

IO1IO2IO3 IO4IO5IO6

Err

fig. 11

